RESEARCH ON AN OPEN-SOURCE SOFTWARE PLATFORM FOR AUTONOMOUS DRIVING SYSTEMS.

LUKAS BULWAHN, TILMANN OCHS, DANIEL WAGNER
BMW CAR IT GMBH

Founded in 2001 as BMW affiliate

Strengthen BMW’s software competence

- View vehicles as software systems
- Develop innovative software for future BMW Group vehicles
- Prototype solutions for early and reliable project decisions

Participate in several open-source communities and research projects

Lukas Bulwahn, Tilmann Ochs, Daniel Wagner, BMW Car IT GmbH, February 2014
Long-term trend: Pass tedious driving tasks to machine

Active field of research: High rate of innovation for the foreseeable future

Competitive: All car manufacturers and others involved

Technology is now available: Sensors, Computers, AI-Algorithms

Main Challenge: Guaranteed reliability
DEPENDABLE POWER COMPUTING

Control Software
- state machine + controller
- reliable microcontrollers
- deterministic software

Cognitive Software
- dynamic models + AI
- peak performance SoCs
- dynamic software structure

advanced driver assistance, automated and autonomous driving, ...
manual driving, driver assistance, active safety, ...

Lukas Bulwahn, Tilmann Ochs, Daniel Wagner, BMW Car IT GmbH, February 2014
Control Software
- state machine + controller
- reliable microcontrollers
- deterministic software

Dependable Power Computing
- dynamic models + AI
- peak performance SoCs
- dynamic software structure

advanced driver assistance, automated and autonomous driving, …
manual driving, driver assistance, active safety, …

DEPENDABLE POWER COMPUTING

Cognitive System

Control System

Lukas Bulwahn, Tilmann Ochs, Daniel Wagner, BMW Car IT GmbH, February 2014
DEPENDABLE POWER COMPUTING

Claim:
differentiation through up-to-date information and functional software
vehicle E/E architecture and software platform is non-differentiating!

Control Software
- state machine + controller
- reliable microcontrollers
- deterministic software

Dependable Power Computing
- dynamic models + AI
- peak performance SoCs
- dynamic software structure

Lukas Bulwahn, Tilmann Ochs, Daniel Wagner, BMW Car IT GmbH, February 2014
FUNCTIONAL SAFETY

Safety Standards

requirements on process and documentation

Risk Analysis + Safety Concept + Safety Evidence = Safety Case

What could go wrong, how bad? How do we reduce the risk? Evidence that concept is implemented! Complete argument that system is safe.

Systematic faults => Careful design, Analysis, QM
Random fault => Diagnosis, Redundancy and Fallback
„Human fault“ => Rigid process, „Safety culture“

Cognitive Software:
Systematic but non-deterministic fault => currently uncontrollable

Lukas Bulwahn, Tilmann Ochs, Daniel Wagner, BMW Car IT GmbH, February 2014
Cognitive Software:
complex processing hardware => currently not supported
large and complex sw-components => laborious to integrate and debug

monolithic binary images => statically configured software stack
„small“ microcontrollers => highly optimized using code generation

Lukas Bulwahn, Tilmann Ochs, Daniel Wagner, BMW Car IT GmbH, February 2014
System Services => Energy Mgmt, State Mgmt, Diagnosis, Update, …
Platform Services => Mass storage, Timebase, Monitoring, Isolation, …
Communication => Ethernet, CAN, Flexray, Network Management, …
Middleware => Standardized API for Portability and Reuse
Linux...
- fulfills many of the requirements
- supports many architectures and is portable
- has large ecosystem and avoids vendor lock-in
- security is continuously monitored and improved
OSADL Foundation:
- Open Source Automation Development Lab
- Foundation (Genossenschaft)
- Funds projects of common interest and provides legal consulting
- Mission: Enable use of open-source software in automation industry

Realtime Linux:
- Support and funding of real-time kernel development (PREEMPT_RT)
- Develop and operate real-time testing lab
- Provide continuous feedback to real-time community

Safety Critical Linux:
- Qualify Linux for use in safety-relevant systems (up to ASIL B)
- Develop qualification packages for partner-provided use cases
- Enabling partners to qualify future GNU/Linux releases
- Results are open source, except use-case details
High development cost => Cost sharing through collaboration
Beyond state of the art => Global agreement on safety case.
Problem resolution => Publish safety-relevant field data.
Complex platform software => Use existing building blocks, such as Linux.

Examples: eGAS, GNATpro, OpenETCS, …
OPEN-PROOF GOVERNANCE

Safety standard requirements:
- Qualified toolchain
- Trained personnel
- Assigned roles
- Planned processes

Board with strict governance rules ensures **compliance** and **effectivity**.

Lukas Bulwahn, Tilmann Ochs, Daniel Wagner, BMW Car IT GmbH, February 2014
CONCLUSION.

Open-proof development of an software platform for autonomous driving...

- is non-differentiating regarding future ADAS functionality
- provides solid base for application software
- is economically superior
- enables innovative approaches to safety

Proposal to initiate activities now:

- enable Linux as automotive operating system
- incorporate dynamic RTE in AUTOSAR standard
- initiate development of open-proof software platform
- harmonize vehicle and software architectures, where possible